首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11652篇
  免费   761篇
  国内免费   922篇
林业   1376篇
农学   623篇
基础科学   200篇
  5333篇
综合类   3972篇
农作物   377篇
水产渔业   253篇
畜牧兽医   587篇
园艺   250篇
植物保护   364篇
  2024年   73篇
  2023年   379篇
  2022年   458篇
  2021年   445篇
  2020年   427篇
  2019年   506篇
  2018年   374篇
  2017年   631篇
  2016年   718篇
  2015年   642篇
  2014年   724篇
  2013年   946篇
  2012年   1009篇
  2011年   905篇
  2010年   650篇
  2009年   667篇
  2008年   590篇
  2007年   596篇
  2006年   502篇
  2005年   443篇
  2004年   297篇
  2003年   224篇
  2002年   138篇
  2001年   126篇
  2000年   122篇
  1999年   86篇
  1998年   105篇
  1997年   82篇
  1996年   79篇
  1995年   62篇
  1994年   50篇
  1993年   63篇
  1992年   47篇
  1991年   41篇
  1990年   30篇
  1989年   27篇
  1988年   25篇
  1987年   17篇
  1986年   10篇
  1985年   8篇
  1984年   7篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
采用3种方法处理尾叶桉,对尾叶桉木材气体渗透性进行了测定,探讨不同处理方法对木材渗透性影响及其作用机理。结果表明:尾叶桉木材因含有侵填体/树胶、导管壁上筛状纹孔影响木材渗透性,木材纵向渗透性大于横向渗透性。经真空、苯-乙醇、尿素处理后,木材渗透性均得到改善;但真空、苯-乙醇处理改善效果不明显,渗透性比未处理材提高幅度均未超过10%;尿素处理可显著改善尾叶桉木材渗透性,渗透性提高了18.91%~41.41%。  相似文献   
62.
基于PLSR-BP复合模型的红壤有机质含量反演研究   总被引:2,自引:0,他引:2  
对红壤地区土壤有机质进行快速预测,以满足智慧农业与精准施肥的需要。以江西省奉新县北部为研究区域,采用1 km×1 km标准格网划分研究区进行采样,共得到红壤样本248个。对土壤光谱进行了包含分数阶导数在内的3种数学变换方法,将经过P=0.01显著性检验的波段用于模型的构建,选用偏最小二乘回归(PLSR)和BP神经网络建立土壤有机质含量预测模型。结果表明:当对红壤光谱数据进行1.5阶导数变换后再使用PLSR-BP复合模型对土壤有机质含量进行预测时的结果为最优,训练集R~2=0.89,RMSE=4.68g·kg~(-1),验证集R~2=0.87,RMSE=5.55g·kg~(-1),RPD=2.75。1.5阶导数对红壤光谱数据的变换能够更好地突出与有机质相关的特征信息,有助于其含量预测。PLSR-BP复合模型预测精度优于单一模型,能够较好地预测红壤有机质含量,为精准农业快速监测红壤有机质含量提供了新的途径。  相似文献   
63.
免耕对土壤微生物量碳影响的Meta分析   总被引:2,自引:0,他引:2  
为综合分析免耕(NT)对土壤微生物碳含量的影响程度,以常规耕作(CT)为对照,收集国内外关于免耕对土壤微生物碳研究已公开发表的41篇文献的田间试验数据162组,采用Meta数据整合分析方法,定量分析中国不同区域、气候类型和试验年限下,免耕对于中国农田土壤微生物碳含量的影响。结果表明,与常规耕作相比,免耕能显著提高土壤微生物碳的含量,免耕-常规耕作(NT-CT)的加权均数差值(WMD)为49.29 mg·kg-1;免耕对土壤中微生物碳含量的影响存在区域差异性,西南地区WMD最大,湿润区(年降雨量>800 mm)免耕对土壤微生物碳含量的正效应最显著;年均温度10~15℃和年均温度>15℃时,免耕土壤中微生物碳含量显著高于常规耕作,且随着温度的升高而增加;免耕年限能够显著影响土壤微生物碳含量,以长期免耕(免耕年限≥8 a)效果最佳。综上,免耕对土壤微生物碳的增加效应存在区域特征,以西南地区最高,随着区域水热条件、免耕年限的不同有所差异,免耕措施的采用应该根据区域特点因地制宜。本研究结果为免耕的区域性合理利用提供了参考依据。  相似文献   
64.
通过铁源筛选比较得知,氯化亚铁比较适合与大豆小肽进行螯合反应制备大豆小肽螯合铁,利用响应面法优化了大豆小肽螯合铁的制备工艺,优化结果为:小肽与亚铁盐质量比4∶1,反应pH5.0,反应温度40℃,得到离子螯合率平均值为56.81%,经中试车间生产试制得到大豆小肽螯合铁的得率是78.3%,螯合率为82.39%,检测大豆小肽螯合铁的主要成分中的蛋白含量为78.94%,铁的含量为10.87%。红外和紫外光谱分析检测结果显示:大豆小肽和大豆小肽螯合铁(Fe~(2+))红外吸收峰的强度在不同波长位置上有明显的变化,大豆小肽螯合铁(Fe~(2+))在紫外波长上发生了明显的位移且宽化,表明大豆小肽螯合铁(Fe~(2+))形成了络合物。同时对大豆小肽螯合铁的结构进行了预测。  相似文献   
65.
李荣娟  黄承烈 《安徽农业科学》2014,(26):9132-9134,9137
加强节能减排,实现低碳发展,不仅是国家“十二五”规划纲要所提出的约束性目标,更是促进经济提质增效升级的必经途径.目前,我国县域经济仍以“高投入、高消耗、高排放”为主要特征,转变经济发展方式已成为县级政府所面临的迫切任务.为此,必须依据低碳发展理念和《2014 ~2015年节能减排低碳发展行动方案》的具体要求,培育有利于经济发展方式转变的要素基础和制度基础,加快推进产业结构的优化和升级,深化经济管理体制改革,不断进行制度创新,实施有利于科技进步的政策,完善环境管理制度,实现县域经济又好又快发展.  相似文献   
66.
A range of agricultural practices influence soil microbial communities, such as tillage and organic C inputs, however such effects are largely unknown at the initial stage of soil formation. Using an eight-year field experiment established on exposed parent material (PM) of a Mollisol, our objectives were to: (1) to determine the effects of field management and soil depth on soil microbial community structure; (2) to elucidate shifts in microbial community structure in relation to PM, compared to an arable Mollisol (MO) without organic amendment; and (3) to identify the controlling factors of such changes in microbial community structure. The treatments included two no-tilled soils supporting perennial crops, and four tilled soils under the same cropping system, with or without chemical fertilization and crop residue amendment. Principal component (PC) analysis of phospholipid fatty acid (PLFA) profiles demonstrated that microbial community structures were affected by tillage and/or organic and inorganic inputs via PC1 and by land use and/or soil depth via PC2. All the field treatments were separated by PM into two groups via PC1, the tilled and the no-tilled soils, with the tilled soils more developed towards MO. The tilled soils were separated with respect to MO via PC1 associated with the differences in mineral fertilization and the quality of organic amendments, with the soils without organic amendment being more similar to MO. The separations via PC1 were principally driven by bacteria and associated with soil pH and soil C, N and P. The separations via PC2 were driven by fungi, actinomycetes and Gram (−) bacteria, and associated with soil bulk density. The separations via both PC1 and PC2 were associated with soil aggregate stability and exchangeable K, indicating the effects of weathering and soil aggregation. The results suggest that in spite of the importance of mineral fertilization and organic amendments, tillage and land-use type play a significant role in determining the nature of the development of associated soil microbial community structures at the initial stages of soil formation.  相似文献   
67.
Dissolved organic matter (DOM) represents an important component of carbon and nutrient cycling in arctic ecosystems. In northern Alaska, DOM production and microbial activity differ among landscapes with varied glaciation histories with lower rates on younger landscapes. In addition, within the region, soil DOM concentrations vary at the scale of hillslope toposequences, with higher concentrations in upslope than streamside positions. However, it is unknown whether variation in DOM production quality among and within landscapes linked to patterns in DOM quality. To answer this question, we conducted a study of DOM biodegradability within and among hillslopes of different landscape age. We examined rates of DOM decomposition and several indices of the quality of water-extracted DOM collected from soils in the summer. A variety of methods indicated that DOM quality generally was consistent across hillslope positions and among landscape ages. For example, DOM fluorescence index, an index of quality for chromophoric DOM, did not vary significantly across all hillslope positions or landscape ages. There were no significant differences among landscape ages or hillslope positions in DOM specific UV absorbance, in rates of DOM mineralization, or in DOM decomposition, indicating that DOM quality was consistent regardless of its source or position along hillslope flow paths. This suggests that despite many potential sources of variation within and among arctic hillslopes linked to differences in vegetation, hydrology, microclimate, and microbial activity, there is little variation in growing-season soil DOM quality. Microbial processing of DOM within arctic hillslopes may lead to a convergence in growing season DOM quality resulting in little spatial variation. Approximately 10–20% of the growing season DOM is labile in tundra soils, slightly higher that the proportion that is labile in arctic rivers during the summer.  相似文献   
68.
Benefits of organic farming on soil fauna have been widely observed and this has led to consider organic farming as a potential approach to reduce the environmental impact of conventional agriculture. However, there is still little evidence from field conditions about direct benefits of organic agriculture on soil ecosystem functioning. Hence, the aims of this study were to compare the effect of organic farming versus conventional farming on litter decomposition and to study how this process is affected by soil meso- and macrofauna abundances. Systems studied were: (1) organic farming with conventional tillage (ORG), (2) conventional farming with conventional tillage (CT), (3) conventional farming under no-tillage (NT), and (4) natural grassland as control system (GR). Decomposition was determined under field conditions by measuring weight loss in litterbags. Soil meso- and macrofauna contribution on decomposition was evaluated both by different mesh sizes and by assessing their abundances in the soil. Litter decomposition was always significantly higher after 9 and 12 months in ORG than in CT and NT (from 2 to 5 times in average), regardless decomposer community composition and litter type. Besides, mesofauna, macrofauna and earthworm abundances were significantly higher in ORG than in NT and CT (from 1.6 to 3.8, 1.7 to 2.3 and 16 to 25 times in average, respectively for each group). These results are especially relevant firstly because the positive effect of ORG in a key soil process has been proved under field conditions, being the first direct evidence that organic farming enhances the decomposition process. And secondly because the extensive organic system analyzed here did not include several practices which have been recognized as particularly positive for soil biota (e.g. manure use, low tillage intensity and high crop diversity). So, this research suggests that even when those practices are not applied, the non-use of agrochemicals is enough to produce positive changes in soil fauna and so in decomposition dynamics. Therefore, the adoption of organic system in an extensive way can also be suggested to farmers in order to improve ecosystem functioning and consequently to achieve better soil conditions for crop production.  相似文献   
69.
Soil functions can be classified as supporting (nutrient cycling) and provisioning (crop production) ecosystem services (ES). These services consist of multiple and dynamic functions and are typically assessed using indicators, e.g. microbial biomass as an indicator of supporting services. Agricultural intensification negatively affects indicators of soil functions and is therefore considered to deplete soil ES. It has been suggested that incorporating leys into crop rotations can enhance soil ES. We examined this by comparing indicators of supporting soil services – organic carbon, nitrogen, water holding capacity and available phosphorous (carbon storage and nutrient retention); net nitrogen mineralisation rate and microbial biomass (nutrient cycling and retention) – in barley fields, leys and permanent pastures along a landscape heterogeneity gradient (100, 500 and 1000 m radii). In addition, barley yields (provisioning service) were analysed against these indicators to identify trade-offs among soil services. Levels of most indicators did not differ between barley and ley fields and were consistently lower than in permanent pastures. Leys supported greater microbial biomass than barley fields. Landscape heterogeneity had no effect on the indicators or microbial community composition. However, landscape heterogeneity correlated negatively with yield and soil pH, suggesting that soils in heterogeneous landscapes are less fertile and therefore have lower yields. No trade-offs were found between increasing barley yield and the soil indicators. The results suggest that soil ES are determined at the field level, with little influence from the surrounding landscape, and that greater crop yields do not necessarily come at the expense of supporting soil services.  相似文献   
70.
金针菇菌渣有机肥对棉花产量及经济效益影响   总被引:3,自引:0,他引:3  
以棉花为材料,在山东省德州市平原县前曹镇进行小区试验,试验共设菌渣有机肥作基肥、与化肥不同比例配施和农民习惯性施肥7个处理,研究施用金针菇菌渣有机肥对棉花产量及经济效益的影响。结果表明,菌渣有机肥可替代化肥在棉花上做基肥施用,可促进棉花增产,菌渣有机肥配合化肥使用效果较好,施用3000kg·hm-2菌渣有机肥和187.5kg·hm-2复合肥(15:15:15)的处理最佳,比农民习惯施肥增产8.2%,效益提高9.6%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号